If it's not what You are looking for type in the equation solver your own equation and let us solve it.
0.5(t^2+4)=20t
We move all terms to the left:
0.5(t^2+4)-(20t)=0
We add all the numbers together, and all the variables
-20t+0.5(t^2+4)=0
We multiply parentheses
0.5t^2-20t+2=0
a = 0.5; b = -20; c = +2;
Δ = b2-4ac
Δ = -202-4·0.5·2
Δ = 396
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{396}=\sqrt{36*11}=\sqrt{36}*\sqrt{11}=6\sqrt{11}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-20)-6\sqrt{11}}{2*0.5}=\frac{20-6\sqrt{11}}{1} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-20)+6\sqrt{11}}{2*0.5}=\frac{20+6\sqrt{11}}{1} $
| 30=2x5x3 | | X+6+3x-18=28 | | -6/7x=21 | | F(y-3)=4(y-7)-(y-7)+3 | | f(6)=4(6)-(6)+3 | | 2x2-10x-5=0 | | 2(u-4)-9=-4(-4u+8)-5u | | 50x+14.040=20x-12500 | | x/23=11.5 | | 63(13)+y-6=180 | | (3x-4)=(6x-4) | | 7t-3+17t-6+t+39=180 | | 60+3s-13+s+13=180 | | 95+5t+t+31=180 | | 2t+2t-5+t+35=180 | | 2v-8+3v+6+5v-18=180 | | 10n+3(2+2n)=-6(n-4) | | 3(x-9)+18=9x+15 | | 20=5(-3x) | | 3=x+15-15x | | w^2+11w=63 | | (W+11)w=63 | | -4x^2+3x+8=0 | | 1/3x-6=x | | 4x+2x-10+82=180 | | 15x+6=3(5x+3)-3 | | 15+9p=9p | | 2x+3x-4=15 | | 7(m+4)-3=70-10m | | 8x-5=6x-25 | | 18+6q=22q-14 | | 2q=7q-81 |